- What indexes do and why they are important. The primary reason indexes are built is to provide faster data access to the specific data your query is trying to retrieve. This could be either a clustered or non-clustered index. Without having an index SQL Server would need to read through all of the data in order to find the rows that satisfy the query
- An index is made up of a set of pages (index nodes) that are organized in a B-tree structure. This structure is hierarchical in nature, with the root node at the top of the hierarchy and the leaf nodes at the bottom, as shown in Figure
When a query is issued against an indexed column, the query engine starts at the root node and navigates down through the intermediate nodes, with each layer of the intermediate level more granular than the one above. The query engine continues down through the index nodes until it reaches the leaf node. For example, if you’re searching for the value 113 in an indexed column, the query engine would first look in the root level to determine which page to reference in the top intermediate level. In this example, the first page points the values 1-100, and the second page, the values 101-200, so the query engine would go to the second page on that level. The query engine would then determine that it must go to the third page at the next intermediate level. From there, the query engine would navigate to the leaf node for value 113. The leaf node will contain either the entire row of data or a pointer to that row, depending on whether the index is clustered or nonclustered
Types of Indexes:
- Clustered Indexes:
A clustered index stores the actual data rows at the leaf level of the index. Returning to the example above, that would mean that the entire row of data associated with the primary key value of 113 would be stored in that leaf node. - An important characteristic of the clustered index is that the indexed values are sorted in either ascending or descending order. As a result, there can be only one clustered index on a table or view. In addition, data in a table is sorted only if a clustered index has been defined on a table.
- Note: A table that has a clustered index is referred to as a clustered table. A table that has no clustered index is referred to as a heap.
- Nonclustered Indexes
Unlike a clustered indexed, the leaf nodes of a nonclustered index contain only the values from the indexed columns and row locators that point to the actual data rows, rather than contain the data rows themselves. - This means that the query engine must take an additional step in order to locate the actual data.
- A row locator’s structure depends on whether it points to a clustered table or to a heap. If referencing a clustered table, the row locator points to the clustered index, using the value from the clustered index to navigate to the correct data row. If referencing a heap, the row locator points to the actual data row.
- Nonclustered indexes cannot be sorted like clustered indexes; however, you can create more than one nonclustered index per table or view. SQL Server 2005 supports up to 249 nonclustered indexes, and SQL Server 2008 support up to 999. This certainly doesn’t mean you should create that many indexes. Indexes can both help and hinder performance
- In addition to being able to create multiple nonclustered indexes on a table or view, you can also add included columns to your index. This means that you can store at the leaf level not only the values from the indexed column, but also the values from non-indexed columns. This strategy allows you to get around some of the limitations on indexes. For example, you can include non-indexed columns in order to exceed the size limit of indexed columns .
Sub Types in Indexes:
- In addition to an index being clustered or nonclustered, it can be configured in other ways:
A unique index is automatically created when you define a primary key or unique constraint:
Primary key: When you define a primary key constraint on one or more columns, SQL Server automatically creates a unique, clustered index if a clustered index does not already exist on the table or view. However, you can override the default behavior and define a unique, nonclustered index on the primary key. - Unique: When you define a unique constraint, SQL Server automatically creates a unique, nonclustered index. You can specify that a unique clustered index be created if a clustered index does not already exist on the table.
- Covering index: A type of index that includes all the columns that are needed to process a particular query. For example, your query might retrieve the FirstName and LastName columns from a table, based on a value in the ContactID column. You can create a covering index that includes all three columns
Index Best Practices:
When in comes to best practices, in some respects I consider them a set of ground rules that should be used as a means to start the design and development process as opposed to an absolute set of rules that are always correct. With that being said, let's outline some points of reference to use as a starting point to address your indexing needs:
- For tables that are heavily updated, use as few columns as possible in the index, and don’t over-index the tables.
- If a table contains a lot of data but data modifications are low, use as many indexes as necessary to improve query performance. However, use indexes judiciously on small tables because the query engine might take longer to navigate the index than to perform a table scan.
- For clustered indexes, try to keep the length of the indexed columns as short as possible. Ideally, try to implement your clustered indexes on unique columns that do not permit null values. This is why the primary key is often used for the table’s clustered index, although query considerations should also be taken into account when determining which columns should participate in the clustered index.
- The uniqueness of values in a column affects index performance. In general, the more duplicate values you have in a column, the more poorly the index performs. On the other hand, the more unique each value, the better the performance. When possible, implement unique indexes.
- For composite indexes, take into consideration the order of the columns in the index definition. Columns that will be used in comparison expressions in the WHERE clause (such as WHERE FirstName = 'Raju') should be listed first. Subsequent columns should be listed based on the uniqueness of their values, with the most unique listed first.
Disadvantages of indexes:
- Occupies high Disk space
- Slower when performing insert, update, delete operations
No comments:
Post a Comment